
B

K
a

b

c

a

A
R
R
A
A

K
A
P
B
Z
W
W

1

m
B
c
t
e
(
i
B
c
a
b
p
I
l
b
m
b
d

e

0
d

Agriculture, Ecosystems and Environment 150 (2012) 72– 81

Contents lists available at SciVerse ScienceDirect

Agriculture,  Ecosystems  and  Environment

jo u r n al hom ep age: www.elsev ier .com/ locate /agee

iosolids  application  to  no-till  dryland  agroecosystems

.A.  Barbaricka,∗, J.A.  Ippolitob, J.  McDaniel c, N.C.  Hansenc, G.A.  Petersonc

Department of Soil and Crop Sciences, Colorado State University, 200 W.  Lake Street, Fort Collins, CO 80523-1170, United States
USDA-ARS-NWISRL, 3793 North 3600 East, Kimberly, ID 83341-5076, United States
Department of Soil and Crop Sciences, Colorado State University, United States

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 28 October 2011
eceived in revised form 11 January 2012
ccepted 12 January 2012
vailable online 9 February 2012

eywords:
mmonium bicarbonate-DTPA

a  b  s  t  r  a  c  t

Dryland  agroecosystems  are  generally  ideal  environments  for recycling  biosolids.  However,  what  is  the
efficacy  of  biosolids  addition  to  a no-till  dryland  management  agroecosystem?  From  2000  to  2010,  we
studied  application  of biosolids  from  the  Littleton/Englewood,  CO  Wastewater  Treatment  Plant  versus
commercial  N fertilizer  in  dryland  no-till  wheat  (Triticum  aestivum,  L.)–fallow  (WF)  and  wheat–corn  (Zea
mays,  L.)–fallow  (WCF)  rotations  at a  site  approximately  40  km  east  of  Byers,  CO.  We  tested  if biosolids
would  produce  the same  yields  and  grain  P, Zn,  and  Ba  concentrations  as  an  equivalent  rate  of  N fertilizer,
that  biosolids-borne  P, Zn, and  Ba would  not  migrate  below  the  10  cm  soil  depth,  and  that  biosolids  appli-
a
n
heat–fallow rotations
heat–corn–fallow rotations

cation  would  result  in the same  quantity  of  residual  NO3–N  as  the  equivalent  N fertilizer  rate.  Biosolids  and
N fertilizer  produced  similar  wheat  and  corn  yields;  but,  biosolids  application  resulted  in  smaller  wheat
grain Ba due  to  the soil  formation  of  BaSO4.  Biosolids  application  produced  greater  NO3–N  concentra-
tions  than  N fertilizer  in the  30–60  and  60–90  cm depths  for the  WF  rotation  and  all  but  the  5–10  and
120–150  cm  depths  for the  WCF  rotation.  We  concluded  that  biosolids  application  in  a  no-till  managed

 an e
dryland  agroecosystem  is

. Introduction

Recycling of biosolids on dryland wheat can supply organic
aterial and a slow-release source of N (Barbarick et al., 1992).

arbarick and Ippolito (2000, 2007) found that continuous appli-
ation of biosolids from the Littleton/Englewood, CO wastewater
reatment plant to dryland wheat provides 8 kg N Mg−1. Castillo
t al. (2011) found that incorporating biosolids in elephantgrass
Pennisetum purpureum Schum.) production resulted in a 25%
ncrease in total organic N mineralization over surface application.
arbarick et al. (1998) also found that biosolids application signifi-
antly increased ammonium bicarbonate-diethylaminepentaacetic
cid (AB-DTPA) extractable Zn to the 60–100-cm depth after six
iosolids additions. In 2003, the USEPA added Ba to the “candidate
ollutants for exposure and hazard screening” (USEPA, 2003). Yet,

ppolito and Barbarick (2006) found biosolids additions actually
owered Ba plant availability. All of these studies involved tilling the
iosolids into the top 20 cm of soil. A new question related to soil
anagement in a biosolids beneficial-use program is: How does

iosolids application affect N, P, Zn, and Ba dynamics in a no-till

ryland agroecosystem?

The standard rotation for dryland agroecosystems in the west-
rn Great Plains has been wheat–fallow (WF). To make more

∗ Corresponding author. Tel.: +1 970 491 6394.
E-mail address: ken.barbarick@colostate.edu (K.A. Barbarick).

167-8809/$ – see front matter ©  2012 Elsevier B.V. All rights reserved.
oi:10.1016/j.agee.2012.01.012
fficacious  method  of recycling  this  nutrient  source.
© 2012 Elsevier B.V. All rights reserved.

optimal use of soil–water storage and precipitation, more intensive
rotations like wheat–corn–fallow (WCF) have gained in popularity
(Peterson et al., 1993; Peterson and Westfall, 2004; Nielsen et al.,
2010).

Little information exists on no-till management of biosolids
amended dryland agroecosystems; however, information from
research on land application to pastures or rangelands provide
clues on the potential effects of surface application without incor-
poration. Joshua et al. (1998) discuss surface biosolids additions
to sheep pastures in Australia and Pierce et al. (1998) report the
effects of surface application in a semi-arid shrubland. Both studies
showed that applications up to 30 Mg  ha−1 can beneficially affect
forage production. Fresquez et al. (1990) found that the most favor-
able soil fertility on a Litle silty clay loam (Mollic Camborthids) and
largest blue grama (Bouteloua gracilis (H.B.K.) Lag.) growth occurred
with biosolids rates of 22.4 or 45 Mg  ha−1. Using sequential extrac-
tion on an Altvan sandy loam (Aridic Argiustolls) from a shortgrass
steppe rangeland dominated by blue grama and western wheat-
grass (Pascopyrum smithii,  (Rydb.) A. Love), Ippolito and Barbarick
(2009) established that biosolids-borne Cu moved into the 8–15
and 15–30 cm depths following single or repeated applications of
up to 30 Mg  biosolids ha−1 while biosolids-borne Zn did not move
significantly.
Our objective was  to compare agronomic rates of biosolids to an
equivalent rate of N fertilizer in conjunction with WF  and WCF  crop
rotations. Our hypotheses were that biosolids addition compared
to N fertilizer:

dx.doi.org/10.1016/j.agee.2012.01.012
http://www.sciencedirect.com/science/journal/01678809
http://www.elsevier.com/locate/agee
mailto:ken.barbarick@colostate.edu
dx.doi.org/10.1016/j.agee.2012.01.012
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Table  1
Growing season precipitation for the biosolids–dryland agroecosystem site near Byers, CO, 2000–2010 (Weather station was installed in April, 2000).

Year Wheat vegetative
September–March

Wheat reproductive
April–June

Corn preplant
July–April

Corn growing season
May–October

Corn critical
July 16–August 26a

cm precipitation
2000–1  8.4 16.0 24.1 24.4 5.9
2001–2  5.3 5.6 15.5 9.9 2.2
2002–3  2.8 8.4 8.6 23.4 1.7
2003–4  0.8 5.8 7.6 21.8 4.7
2004–5  4.3 10.9 13.5 21.8 8.8
2005–6  6.4 3.3 16.3 20.1 4.7
2006–7 8.9  9.4 22.4 20.8 13.5
2007–8  3.8 5.6 18.3 26.7 18.3

0.0 

5.9 

1
2

3

4

2

o
a
t
3
w
m

T
L

2008–9  5.3 21.1 3
2009–10  8.3 13.9 2

a Nielsen et al. (2010).

. Will produce similar wheat and corn yields (P > 0.05).

. Will produce comparable grain concentrations of P, Zn, and Ba
(P > 0.05). Since biosolids adds excess P when applied at the N
agronomic rate (Shober and Sims, 2003), we  monitored grain
P concentrations. We  studied grain Zn since soils in the west-
ern Great Plains typically contain less than adequate soil levels
(Follett and Westfall, 2004).

. Will not differ in plant-available soil concentrations (AB-DTPA
extractable; Barbarick and Workman, 1987) of P, Zn, and Ba
below 10 cm (P > 0.05). This hypothesis indicates that these ele-
ments will not migrate below 10 cm.

. Will not differ in soil accumulation of nitrate–N (NO3–N) through
a depth of 180 cm (P > 0.05). This hypothesis assumes that we
were able to match the crop N requirements with the N avail-
ability supplied by the biosolids or the N fertilizer.

. Materials and methods

We  established our research on land owned by the Cities
f Littleton and Englewood (L/E) in eastern Adams County,
pproximately 40 miles east of Byers, CO. The latitude longi-

ude for the plot corners are 39◦45′47′′/103◦47′′50′′ (southwest),
9◦45′47′′/103◦47′′17′′ (southeast), 39◦46′7′′/103◦47′′50′′ (north-
est), 39◦46′7′′/103◦47′′17′′ (northeast). A tenant farming family
anages the site. Soils belong to the Adena–Colby association

able 2
ittleton/Englewood biosolids composition used at the Byers research site, 1999–2005.

Parameter 1999 Wheat 2000 Corn 2001 Corn 2001 Wheat 2003

Solids, g kg−1 217 – 210 220 254 

pH  7.6 7.8 8.4 8.1 8.
EC,  dS m−1 6.2 11.2 10.6 8.7 7.
Org.  N, g kg−1 50 47 58 39 54 

NH4–N, g kg−1 12 7 14 16 9 

NO3–N, g kg−1 0.023 0.068 0.020 0.021 0.
K,  g kg−1 5.1 2.6 1.6 1.9 2.
P,  g kg−1 29 18 34 32 26 

Al,  g kg−1 28 18 15 18 14 

Fe,  g kg−1 31 22 34 33 23 

Cu,  mg  kg−1 560 820 650 750 596 

Zn,  mg kg−1 410 543 710 770 506 

Ni,  mg  kg−1 22 6 11 9 11 

Mo,  mg kg−1 19 22 36 17 21 

Cd,  mg kg−1 6.2 2.6 1.6 1.5 1.
Cr,  mg kg−1 44 17 17 13 9 

Pb,  mg kg−1 43 17 16 18 15 

As,  mg  kg−1 5.5 2.6 1.4 3.8 1.
Se,  mg  kg−1 20 16 7 6 17 

Hg,  mg kg−1 3.4 0.5 2.6 2.0 1.
Ag,  mg  kg−1 –a – – – 15 

Ba,  mg  kg−1 – – – – – 

Be,  mg  kg−1 – – – – – 

Mn,  mg kg−1 – – – – – 

a – Indicate analyses were not completed.
32.8 7.9
17.7 5.2

where the Adena soil is classified as an Ustollic Paleargid and
Colby is classified as an Ustic Torriorthent. No-till management
was used in conjunction with crop rotations of WF,  WCF, and
corn–fallow–wheat (CFW); the only soil disturbance that occurred
was with the wheat and corn planting equipment. We  installed a
Campbell Scientific® weather station at the site in April 2000. Pre-
cipitation for the 2000 through 2010 growing seasons, and for the
critical grain filling periods, are presented in Table 1.

We designed the experiment so that every phase of each rota-
tion was present during each year. The rotational phases present
each year were W–F, F–W, W–C–F, C–F–W, and F–W–C (5 total
plots per replication) in a randomized complete block design in a
split-plot arrangement with two  replications. Each plot was  30 m
wide by approximately 800 m long. Available contiguous land area
limited us to two  replications. Each whole plot was  split so that
one 15-m section received commercial N fertilizer (34-0-0) and
the second 15-m section received biosolids (applied by L/E with a
manure spreader). The experiment was  initiated in fall 1999 when
the biosolids treatments were first applied. We  randomly selected
which strip in each rotation received N fertilizer or biosolids.
Biosolids were applied in August on wheat plots and in March

on corn plots. Based on research by Barbarick and Ippolito (2000,
2007), we  assumed each Mg  of dry biosolids would provide 8 kg
available N for each application. Table 2 provides the characteris-
tics of the L/E biosolids. The N fertilizer and biosolids applications

 Corn 2003 Wheat 2004 Wheat 2005 Corn Avg. Range

192 197 211 214 192–254
5 8.2 8.8 8.2 8.2 7.6–8.8
6 7.4 4.5 5.1 7.7 4.5–11.2

46 43 38 47 38–58
13 14 14 12 7–16

027 0.016 0.010 0 0.023 0–0.068
2 2.6 2.1 1.7 2.5 1.6–5.1

28 29 13 26 13–34
15 17 10 17 10–28
24 20 20 26 20–34

689 696 611 672 560–820
629 676 716 620 410–770

12 16 4 11 4–22
34 21 13 23 13–36

5 2.2 4.2 2.0 2.7 1.5–6.2
14 18 14 18 9–44
21 26 16 22 15–43

4 1.6 0.5 0.05 2.1 0.05–5.5
1 3 0.07 8.8 0.07–20

1 0.4 0.9 0.1 1.4 0.1–3.4
7 0.5 1.2 5.9 0.5–15
– 533 7 270 7–533
– 0.05 <0.001 0.05 <0.05
– 239 199 219 199–239
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Table  3
Biosolids and N fertilizer applications for various dryland rotations at the Byers research site, 1999–2005.

Year Rotation Plot number Biosolids rate, Mg ha−1 N fertilizer rate, kg ha−1

1999–2000 Wheat–Fallow 103, 201 5.4 43
Wheat–Corn–Fallow 107, 210 5.4 43
Corn–Fallow–Wheat 108, 202 9.0 72

2000–2001 Wheat–Fallow 106, 208 0 0
Wheat–Corn–Fallow 102, 203 0 0
Corn–Fallow–Wheat 107, 210 12.3 99

2001–2002 Wheat–Fallow 103, 201 4.5 36
Wheat–Corn–Fallow 108, 202 4.5 36
Corn–Fallow–Wheat 102, 203 12.5 100

2002–2003 Wheat–Fallow 106, 208 4.5 36
Wheat–Corn–Fallow 107, 210 4.5 36
Corn–Fallow–Wheat 108, 202 0 0

2003–2004 Wheat–Fallow 103, 201 4.5 36
Wheat–Corn–Fallow 102, 203 4.5 36
Corn–Fallow–Wheat 107, 210 0 0

2004–2005 Wheat–Fallow 106, 208 6.7 54
Wheat–Corn–Fallow 108, 202 6.7 54
Corn–Fallow–Wheat 102, 203 9.0 72

Total  by Wheat Fallow 103, 201 14.4 115
plots  Wheat Fallow 106, 208 11.2 90

Wheat Corn Fallow and Corn Fallow Wheat 107, 210 22.2 178
108, 2
102, 2

w
f
f
t
W
t

2

Wheat Corn Fallow and Corn Fallow Wheat 

Wheat Corn Fallow and Corn Fallow Wheat 

ere based on soil test recommendations determined for each plot
or each crop. The last biosolids and N fertilizer application was
or corn in the spring of 2005 due to accumulation of NO3–N to
he extent that N additions would not be recommended (Davis and
estfall, 2009). Biosolids and N fertilizer application rates for 1999
hrough 2005 are given in Table 3.

We completed wheat harvests in July 2000 through 2010, except
006, and corn harvests in October, except 2002 through 2006. We

6

7

Biosol ids

Nitrogen fertilizer

F prob

Y
ie

ld
, 
M

g
 h

a
-1

1

2

3

4

5

F prob.
year <0.00 1

sou rce 0.50 6
year*sou rce 0.27 8

plot 0.74 6

201020082006200420022000

0

10000

G
ra

in
 P

, 
m

g
 k

g
-1

4000

6000

8000

Biosolids

Nitrogen fertiliz er

F prob .
year <0.00 1

sou rce 0.00 4
year*sou rce 0.28 4

plot 0.01 7

201020082006200420022000

0

2000

Fig. 1. Wheat yields and grain P, Zn, and Ba for the wheat–fallow rotation at the Bye
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experienced a wheat-crop failure in 2006 and corn-crop failures in
2002 through 2006. For each harvest, the grain was cut from four
areas of 1.5 m by approximately 30 m.  We  determined the yield for
each area and then took a subsample from each cutting for sub-

sequent elemental grain analyses for P, Zn, and Ba concentrations
(Ippolito and Barbarick, 2000).

Following each harvest, composite soil samples were collected
using a Giddings® hydraulic probe. For AB-DTPA extractable P,
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Fig. 2. AB-DTPA P for the wheat–fallow rotation at the Byers, CO location, 2000–2010. Error bars depict the standard error of the mean.
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Fig. 4. AB-DTPA Ba for the wheat–fallow rotation at the Byers, CO location, 2000–2010. Error bars depict the standard error of the mean.

Fig. 5. Soil NO3–N for the wheat–fallow rotation at the Byers, CO location, 2000–2010. Error bars depict the standard error of the mean.
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ig. 10. AB-DTPA Ba for the wheat–corn–fallow and corn–fallow–wheat rotations a

n, and Ba we sampled to 30 cm and separated the samples into
–5, 5–10, 10–20, and 20–30 cm depth increments. For soil NO3–N
nalyses, we sampled to 180 cm and separated the samples into
–5, 5–10, 10–20, 20–30, 30–60, 60–90, 90–120, 120–150, and
50–180 cm depth increments.

The soil samples were immediately air-dried and crushed
o pass a 2-mm sieve. We  determined soil NO3–N concentra-
ions using a 2 M KCl extraction (Mulvaney, 1996) and soil
oncentrations of plant-available P, Zn, and Ba in AB-DTPA
xtracts (Barbarick and Workman, 1987) utilizing inductively
oupled plasma-atomic emission spectroscopy (Soltanpour et al.,
996).

For statistical purposes, we analyzed the WF  and the WCF
otations as separate experiments. The experimental design for
he WF  rotation was a split-plot design where year was the

ain plot and nutrient source (L/E biosolids versus commer-
ial N fertilizer) was the subplot. We  used SAS PROC MIXED
SAS, 2010) at the 0.05 probability level to complete the sta-
istical analyses. For the WCF  and CFW rotations, we  combined
he data with the assumption that “plot” would not have a sig-
ificant effect on the statistical results and we  used SAS PROC
IXED (SAS, 2010) at the 0.05 probability level to test for sta-
istical significance. Where a plot effect was found, we did not
iscuss the statistical results. For the WCF  and CFW rotations,
orn and wheat yields and grain P, Zn, and Ba were analyzed
eparately.
Byers, CO location, 2000–2010. Error bars depict the standard error of the mean.

3. Results and discussion

3.1. Wheat–fallow rotation

The largest yields were found in 2009 when the greatest amount
of precipitation occurred during the wheat reproductive period
(Fig. 1; Table 1). A crop failure occurred in 2006 due to the lack
of moisture during the wheat reproductive period (Table 1). The
nutrient source by year interaction did not affect grain Ba or Zn.
Therefore, we accepted Hypothesis 1 and 2 that biosolids would
not produce different yields or grain Zn and Ba than N fertilizer for
the WF rotation.

Year significantly impacted the soil AB-DTPA P, Zn, and Ba, con-
centrations at all depths (Figs. 2–4). Nutrient source did not affect
AB-DTPA Ba at any depth; however, biosolids produced larger AB-
DTPA P at the 20–30 cm depth and Zn in the top 5 cm.  The year by
nutrient source interaction was significant for AB-DTPA concen-
trations at several depths. We  accepted Hypothesis 3 for the WF
rotation AB-DTPA Zn and Ba concentrations since biosolids had no
effect on concentrations below 10 cm;  we  rejected the hypothesis
for AB-DTPA P.

The surface AB-DTPA P levels exceeded 7 mg  kg−1 in all years

except 2002, despite the nutrient source. Consequently, all but
the 2002 results would be considered as “high” P concentrations
and no fertilizer additions would be recommended (Davis and
Westfall, 2009). As suggested by Shober and Sims (2003),  biosolids
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dditions that follow the agronomic N rates tend to add excess P.
he “high” available P levels in the N fertilizer treatment resulted
rom fertilizer applications before we initiated our study.

According to Follett and Westfall (2004),  AB-DTPA Zn con-
entrations below 1.5 mg  kg−1 are considered marginal in plant
vailability. For the 0–5 cm depth, only the 2007 levels for the N
ertilizer treatment exceeded 1.5 mg  Zn kg−1 while biosolids treat-

ent produced soil concentrations greater than 1.5 mg  kg−1 from
004 through 2010. Biosolids were an effective Zn fertilizer. Almost
very subsoil AB-DTPA Zn concentration was below 1.5 mg  kg−1.
arbarick et al. (1997) found similar results in a minimum tillage
anagement system.
Biosolids application led to significantly larger NO3–N concen-

rations in the 30–60 and 60–90 cm depths (Fig. 5). Possibly, these
epths reflect the vertical movement of accumulated NO3–N from
he surface since no applications had been made to WF  rotations
rom 2004 through 2010. The year by nutrient source interaction
ffected NO3–N concentrations at 0–5 and 10–20 cm (Fig. 5). We
eject Hypothesis #4 for WF  rotations since biosolids impacted
O3–N accumulation at several depths. These NO3–N increases

esulted from below average crop yields (Colorado average winter-
heat yields from 2001 to 2010 were about 2 Mg  ha−1; USDA NASS
olorado Field Office, 2011) in 2000, 2002, 2005, 2006, and 2008
Fig. 1) that reduced N removal and also possibly from underes-

imation of N availability from biosolids applications. Barbarick
nd Ippolito (2007) based their N equivalency of the biosolids
8 kg N Mg−1 per application) on material that had been dried to
n average of 74% solids and a total N content of about 2.9%. As

ig. 11. Soil NO3–N for the wheat–corn–fallow and corn–fallow–wheat rotations at the B
s and Environment 150 (2012) 72– 81

shown in Table 2, our Byers site received biosolids that averaged
about 21% solids and a total N concentration of about 5.9%. We
originally thought that in the no-till system that the NH4–N in
the biosolids would volatilize as the material dried and that lack-
ing incorporation in the soil, N mineralization would be inhibited.
Our assumptions apparently were not accurate; thus, a need exists
to predict biosolids N availability under agroecosystem manage-
ment practices similar to those presented in this study. Castillo
et al. (2010) provide a technique for estimating N availability from
surface application of biosolids in a humid climate. Possibly, this
method could be used in dryland agroecosystems.

3.2. Wheat–corn–fallow and corn–fallow–wheat rotations

The 2006 wheat crop was lost because of inadequate moisture
during the wheat reproductive stage (Table 1). We  experienced
corn crop failure in 2002–2006 due to inadequate rainfall during
the critical July 16th to August 26th period (Table 1; Nielsen et al.,
2010). Biosolids produced lower wheat Ba concentrations (Fig. 6)
due to the lowering of AB-DTPA Ba in the top 10 cm of soil (Fig. 10).
As Ippolito and Barbarick (2006) reported, biosolids can reduce
available soil Ba by forming BaSO4.

Corn grain P and Zn were significantly affected by year and grain
P by the year by nutrient source interaction (Fig. 7). The year by

nutrient source interaction affected corn yields. Most of the corn
grain Ba concentrations were below detection limits.

Biosolids increased AB-DTPA P in the 0–5 cm depth and AB-DTPA
Zn at all depths (Figs. 8 and 9) and significant year by nutrient source

yers, CO location, 2000–2010. Error bars depict the standard error of the mean.
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nteractions affected these same parameters. By contrast, biosolids
pplication created lower AB-DTPA Ba in the top 10 cm (Fig. 10)
robably due to BaSO4 formation (Ippolito and Barbarick, 2006).

Compared to N fertilizer, biosolids produced larger NO3–N con-
entrations at all depths except 5–10 and 120–150 cm (Fig. 11).
his accumulation is the result, as discussed earlier, of lack of N
emoval due to crop failures and underestimation of the biosolids’

 availability. We  did not find any year by nutrient source
nteractions.

For the WCF  and CFW rotations, we accepted Hypothesis #1
ince nutrient source did not affect yields. We  accepted Hypothesis
2 for wheat Zn and corn P and Zn, but not for wheat Ba since
iosolids actually lowered the grain Ba concentration. We  accepted
ypothesis #3 that nutrient source would not affect AB-DTPA Ba
nd P in the top 10 cm,  but rejected the hypothesis for AB-DTPA
n. Biosolids were actually an effective Zn fertilizer. We  rejected
he hypothesis that nutrient source would not create different
O3–N levels throughout the soil profile since biosolids increased

he NO3–N concentrations in most depths.

. Conclusions

From our study, we  learned that surface application of biosolids
ould replace N fertilizer in a no-till dryland agroecosystem without
eleterious effects on wheat or corn yields. Results were mixed
egarding movement of P, Zn, and Ba below 10 cm.  The biosolids
unctioned as a Zn fertilizer by improving Zn availability to plants.
ack of N removal by wheat and corn crops and underestimation of

 provided by the biosolids led to NO3–N accumulation.
Several challenges remain. First, can we develop a better

stimate of N availability from surface application of biosolids?
econdly, can biosolids act like crop residue and provide greater
oisture retention in a no-till management system? Lastly, will

urface biosolids application lead to negative effects on runoff-
ater quality?
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